居

STUDY OF THE INTERACTION BETWEEN AMYLOID BETA AGGREGATES AND THE LPFFD PEPTIDE BY USING ATOM FORCE MICROSCOPY TECHNICS AND GOLD

NANOPARTICLES

Aurora Morales ${ }^{\text {a }}$, Leonardo Caballero ${ }^{\text {b,c }, ~ F r a n c i s c o ~ M e l o ~}{ }^{\text {b,c }}$ and Marcelo J. Kogan ${ }^{\text {a,b* }}$

Introduction

The amyloid beta peptide ($A \beta$), involved in Alzheimer's disease. change the conformation in pathological conditions forming toxic aggregates (TA), like amylospheroids (AE), protofibrils, globular
aggregates and amyloid fibrils (AF), that have a neurodegenerative ggregates and amyloid fibris (AF), that have a neurodegenerative effect. Different authors have studied and postulated structural models with the disposition of A β monomers in the TA. However the disposition of the AB molecules in the AF is still unclear. In the the TA of AB adsorbed on a Highly Ordered Pyrolytic Graphite the TA of A β adsorbed on a Highly Ordered Pyrolytic Graphite (HOPG) surface with a gold-ClPFFD linked tip. Through this procedure we can recognize la with structural domains thar guide us in the molecular structures of these aggregates.
The force curves give information of the interaction between the AF of $A \beta$ and the peptide sequence CLPFFD. The main interaction observed is the adhesion attriburable to the exposed hydrophobic esidues in the AF
In a previous study, the structures of AF were observed using atomic force microscopy (AFM), and AF exhibits a nodular structure with a ~ $100-\mathrm{nm}$ periodicity nm^{3}. In another stedy, gold nanoparticles (AuNPs) were linked to the peptide CLPFFD that selectively attaches to the AF of AB. It is believed that the AuNP-CLPFFD recognize hydrophobic domains of the β-sheet structure with a 100 im of periodicity. ${ }^{5}$
This would indicate that this periodicity set out groups that allow interaction between AF and L, F and F residues of such peptide. Moreover, we incubated the AuNP-CLPFFD and TA in volume and the formed complex were observed on a Mg^{+2}-Ruby-Mica surface. In this case AuNP-CLPFFD are included into the TA structure periodically. These results indicate that there are periodical domains in the AF.

Methodology

Functionalization of atomic force tip
o study the interaction of the CLPFFD peptide with $A \beta$, we functionalized a Olympus TR400PB gold cantilever with a tip with 15 mm of nominal radius. This cantilever was introduced for 30 s in low pressure camera (10^{-2} mbar) that generates a plasma etching stream that can withdraw 2 nm of the metallic surface of the tip. The angmuir-Blodgett method was used for the functionalization with a $1 \times 10^{-7} \mathrm{M}$ of CLPFFD solution, which formed a gold monolayer adsorbed on the surface of all cantilever. ${ }^{6}$

Preparation of short AF and adsorption on HOPG Aggregates are obtained from 0.05 mg of lyophilized $A B$ Peptide). This is re-suspended in 1 mM NaOH , and adjust pH to 7 with 10 mM NaOH . The aggregation process was initiated using 20 mM phosphate buffer, $\mathrm{pH}=7.4$, to reach a $100 \mu \mathrm{M}$ A β_{1-42} concentration. The incubation period was $20 \mathrm{~h} 23^{\circ} \mathrm{C} .30 \mu \mathrm{~L}$ of the TA obtained were allowed to adsorb for 15 min at room temperature on freshly cleaved HOPG (SPI-1), that has a strong affinity for hydrophobic structures

Atomic Force Microscopy (AFM)

All images was performed with a commercial Multimode IIIa atomic force microscope controlled by a Nanoscope electronics 5.3013.sr3 (Digital Instruments, Santa Barbara, CA), equipped with either a 120 um l-scamner, or a $12 \mu \mathrm{~m}$ E-scanner, or a $40 \mathrm{\mu m}$ PFscanner. The images were taken either in liquid (5 mM buffer phosphate pH 7.4) using a tapping mode (TMAFM) in liquid cell with the O-ring seal, and using either a Veeco NP (TMAFM) or a Olympus TR400PB (FV) probes (Figure 1), or in air using a TMAFM in air without the O-ring seal, and using the Veeco TESPA-7 probe (see the AuNP-CLPFFD experiment)

Incubation of AF with AuNP-CLPFFD

$30 \mu \mathrm{~L}$ of $100 \mu \mathrm{M}$ AF of $A \beta_{1-42}$ solution was prepared, and were mixed in a vial with $1 \mu \mathrm{~L}$ of AuNP-CLPFFD in citrate ($2 \mu \mathrm{M}$ y 6 nM respectively). This was incubated at room temperature for 24 hours, and was 5 hours in the magnetic stirrer

Functionalization of Ruby-Mica surface cm^{2} piece of muscovite ruby mica was glued to a painted steel upport. $30 \mu \mathrm{~L}$ of a 9 mM Cl Mg solution were allowed to adsorb for Omin at room temperature on freshly cleaved ruby mica. The surface was carefully rinsed with nano-pure water and gently dried under a N_{2} stream

Discussion

The AF that have a 100 im of periodicity present a compatible topography with the recent models about their molecular structure and indicates that this AF adopt a helical conformations to protect from the water th hydrophobic domains (Figure 1). In the FV experiments we could not find a correlation between the height image during the FV and the FV image. To obtain information about the periodicity, more resolution FV is necessary and this is not available in the execution optimum time (Figure 3). The F, between gold probe and HOPG surface is 0; therefore, all other interactions observed correspond a CIPFFD and HOPG or TA interactions. The hydrophobic interaction between CLPFFD and HOPG surface is $<0.085 \mu \mathrm{~J} / \mathrm{m}^{2}$. This is lower than the typical hydrophobic interactions ($50 \mu \mathrm{~J} / \mathrm{m}^{2}$)? The CLPFFD and AF interactions is among 0 and $6.6 \mathrm{\mu}^{\prime} / \mathrm{m}^{2}$ (Table 1). That indicates a lower or non existent hydrophobic interaction which could be explained by the high TA adsorption on the HOPG through the hydrophobic domains in the AF. In this way, the AF on the HOPG surface can't expose their hydrophobic residues, which difficult the interaction with CLPFFD.
-The main idea of use the AuNP-CLPFFD in the inhibition of the $A \beta_{1-42}$ aggregation process is the possibility of this LPFFD sequence to be limked on the hydrophobic sequence (${ }^{77}$ LVFFA²) of $A \beta_{1-42}$. This thydrophobic interaction can occur when we mixed AuNP-CLPFFD with AF of AB, for a few hours. In the Mg ${ }^{+2}$ ruby mica substrate the TA, are attached to the surface by charge-charge interactions and the structure of the complex AB. /AuNP-CLPFF is modified with respect to AB. . We make statistics about the size of the AF with and without the AuNP-CLPFFD on Mg ${ }^{2}$ ruby mica substrate in air TMAFM (Figures $6,7,8$ and 9). The AF has two sites where we can measure horizontal (diameter) and vertical (high) distance, and this is a superior and lower zone of the AF, like we can see in the superior topography in the figure 1. (Tables 2 and 3); a difference between the AF diameter with AuNP-CLPFFD and without them. Other authors have explained that NP can form pores and lowering the integrity of lipid membranes; and the NP can be enveloped for the membranes resulting in a curvatures outside of that region. ${ }^{10}$ In the case of AF in presence of AuNP-CLPFFD are observed a 100 mm periodic inclusion (Figure 7), which reveals that in the fibrils are exposed periodical hydrophobic domains that allow the interaction of FA with AuNP-CLPFFD.
${ }^{\text {tPike CJ. I Neuroscience. 1993,13:1676-87. }{ }^{2} \text { Sato T. Biochemistry.2006, 45, 5503-5516 }}$
Soto C. Nature Medicine. 1998:4(7):822-6 SKogan M.I. Nano Letters. 2006;6(1):110-5 Morris VJ. Londres, ICP, 1999, 332 p.
${ }^{3}$ Arimon M. FASEB I. 2005: 19(10):1344-6 Duschi C. Biophysical I. 1994:67(3):1229-37 ${ }^{17}$ Roiter Y. Nano Letters. 2008;8(3):941-4

